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HEAT TRANSFER DURING THE HEATING AND EVAPORATION
OF A LAMINAR LIQUID FILM MOVING UNDER THE
EFFECT OF A GAS STREAM

V. N. Afrosimova and E. I. Kozel'skili UDC 532.62

A simplified physical mode!l is examined for the flow and evaporation of a laminar liquid film en-
trained by a gas stream and with a given heat flux density at the wall which is constant along the entire
heating surface. It is assumed that the film flow is stable, the physical properties of the liquid, except
for the viscosity, depend little on the temperature, and the thermal load is not sufficient for the appear-
ance of bubble boiling. Three characteristic sections are distinguished along the length of the film: 1)
the initial thermal section within which develops the thermal boundary layer across the film thickness; 2)
the section of stabilized heating of the liquid film to the equilibrium evaporation temperature; 3) the sec-
tion of isothermal evaporation of liquid from the surface of the film.

Calculation of the heat transfer comes down to the joint integration of the system of equations of
energy, motion, and temperature variation in the viscosity of the liquid for each of the sections and the
subsequent joining of the results of the calculations. An analysis shows the possibility of simplifying the
initial system of equations with allowance for the fact that: a) heat transfer in the film due to thermal
conduction along the channel axis is small compared with the transfer due to convection; b) wy and duwy/9x
are small compared with w, and dwyx/dy; c) the forces of inertia can be neglected in comparison with the
forces of friction and pressure; d) the temperature dependence of the viscosity can be described accurately
enough by a second-~degree trinomial; e) instead of the convective term wy (5t/5x) in the energy equation one
can be limited to its value averaged over the thickness of the film (over the the thickness of the thermal
boundary layer in the first section).

In the region of stable film flow there is satisfactory agreement between the analytical solution and
the results of an experimental determination of the Nusselt number obtained for film flow of hydrocarbon
fuel under the effect of an air stream in a horizontally mounted evaporator channel. A ceriain decrease
in the heat transfer compared with the calculated value, observed in the final sections of evaporation, Is
explained by a disturbance in the wetting of the heat-transfer surface by the film with a decrease in the ir-
rigation density because of evaporation of part of the liquid.
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LAWS OF HYDRODYNAMICS AND HEAT EXCHANGE DURING
VAPOR FORMATION IN A FILM AT A VERTICAL

SURFACE WITH WIRE INTENSIFIERS

1. STUDY OF HYDRODYNAMICS OF THE FILM

V. G. Rifert and P, A. Barabash UDC 66.02.536,24

To intensify the heat exchange during vapor formation in a film descending over a vertical surface the
authors used wires 0.7-1.47 mm in diameter fastened lengthwise to the surface. The results of a defer-
mination of some parameters of the film and the minimum irrigation density I'ymjp are presented in the first
part of the article. Analytical equations are presented for the determination of the local film thickness be-
tween wires and the average film thickness § over a section, its radius of curvature as a function of the
distance s between wires and their diameter d, the curvature of the surface, andthe wetting angle of the
wires, For this one must know the thickness §, at the minimum cross section of the film halfway between
wires., This thickness and the local thicknesses § at other points were determined by the elecirocontact
and capacitance method. '

The experiments were performed on flat and cylindrical surfaces, cold and heated by electric cur-
rent, made of different materials. Distilled water and an NaCl solution with a concentration of 35 g/liter
served as the working liquids. At I'yin. which is the flow rate below which rupture of the film occurs,
the minimum values of §, for surfaces with wires are three to four times lower than the minimum film
thicknesses for surfaces without wires and comprise 0.03-0.05 mm for s =4-17.5 mm regardless of the
liquid temperature {; and the overheating of the wall relative to tl . For the determination of §_ for other
than the minimum wetting flow rates the experimental data for any s, d, and t; are generalized by the de-
pendence

5, ( Re >x.os
—_0 41 .
ofmin T+1%e Remin
where Re . =Ly iy/ve is the minimum value of Re, corresponding to the appearance of a rupture in the

film upon a decrease in the liquid flow rate, The effect of the heat flux density q and of the material of
the surface and the wires on I,,j,. 8, d, and t; was studied. Improvement in the wetting (reduction in
Tynin) is noted upon the appearance of vapor bubbles, as well as upon the change from distilled water to
the NaCl solution. The experimental data are generalized by the equation

Remin_____ 0.237 GaOJS Z?.(Q ZgAG’
where Ga =g8%/v%; Z;=8/5; Zy=d/5, which is valid for Ga =20-2200, Z,=2-6, and Z; =< 50.

Dep. 50-75, December 16, 1974,
Original article submitted July 7, 1974,

LAWS OF HYDRODYNAMICS AND HEAT EXCHANGE
DURING VAPOR FORMATION IN A FILM AT A
VERTICAL SURFACE WITH WIRE INTENSIFIERS
2. STUDY OF HEAT EXCHANGE

V. G. Rifert, P. A. Barabash, UDC 66,02.536.24
and A. A. Muzhilko

The heat-exchange mechanism is studied and the local and average heat-exchange coefficients are
determined for vapor formation in a smooth film flowing down along a vertical surface with longitudinal
wire ribbing, Electrical heating of the surface was used for this purpose. The local wall temperatures
between the wires were measured by thermocouples, while the average wall temperatures over the sections
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and the average wall temperature for the entire surface were measured by thermocouples and resistors.
Tests were made on distilled water and an NaCl solution with a concentration of 35 g/liter at p=1.17 - 10*-
0.98 - 10° N/m?, q=1.5-10*-1.2 - 10° W/m?, and Reg; =400-2300. A 1.5- to 2-fold intensification of the
heat exchange in the entire range of variations in q and Reg; studied is noted for a surface with longitudinal
wire ribbing in comparison with a smooth surface. This is explained by the presence of a thin film half-
way between wires, the more turbulized film nearer the wires, and the effect on the thinner films of the
pulsations arising in the thick films. A maximum of the heat exchange is obtained for a certain distance s
between wires, For the case of evaporation of the film a calculating system is proposed for the determina-~
tion of the average heat-exchange coefficient in which allowance is made for the presence between wires

of sections differing in the modes of film flow. The experimental points lie satisfactorily near the calcula-
ted lines.

Dep. 51-75, December 16, 1974.
Original article submitted July 7, 1974.

AIR HUMIDIFICATION IN A CLOSED ROOM USING
A ROTARY HUMIDIFIER

M. F. Bogomolov, V. F. Dunskii,
N. V. Nikitin, and Yu. V., Yatskov

Humidification of the air often proves to be the sole required operation in room air conditioning.
In this case one can avoid bulky and expensive conditioners and be limited to the use of simple and inex-
pensive rotary room humidifiers. A rotating disk or drum which breaks the water down into almost iden~
tical droplets is used as the water atomizer in these humidifiers [1, 2]. Finer polydisperse satellite drop-
lets are formed along with these "main" droplets,

The usual working process of a monodisperse atomizer (utilization of the main droplets and elimina-
tion of the satellite droplets) is reversed for rotary humidifiers; the finer rapidly evaporating satellite
droplets are used for air humidification while the larger main drops are eliminated (deposited within the
humidifier). :

The arrangement of a rotary humidifier [3]is shown in
Fig. 1. It consists of the rotating atomizer 1 fastened to the
shaft of the electric motor 2, The impeller of an axial ventila-
tor 3 and the rotor of a centrifugal pump 5 are fastened to the
lower end of the shaft of the electric motor 2, The frame 4
forms the water reservoir. When the humidifier is operating
water enters from the pump 5 through the measuring nozzle
6 into the rotating atomizer 1. The main droplets thrown off
from the periphery of the atomizer 1 under the effect of the cen-
trifugal forces are deposited on the inner surface of the frame
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— 4 and run down into the reservoir, from which the water enters
o 1 : the pump 5 by gravity flow. The finer satellite droplets are en-
-_é:-.*:‘ i { trained by the air stream which is created by the ventilator 3.
?» ;—Ek ‘ , :?’}‘ ' The turbulent air-droplet vertical jet which forms delivers the
d \4":_«," fj‘ ’“i drops upward toward the ceiling and promotes the circulation
> N and mixing of the air within the room. While settling the drop-
[ ‘__ & {—; ; lets are fully or partially evaporated and humidify the air in
. \\I:” A the room. The water flow rate is 0.17 ml/sec and the power
= AR required is 100 W,

The operation of the humidifier in a room occurs under
conditions of natural ventilation. During the evaporation of the
Fig. 1. Diagram of rotary humidi- droplets they are cooled and the concentration of saturated va-

fier, por near their surface is less than the vapor concentration
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corresponding to saturation of the air in the room, i.e., it is not possible to provide saturation of the air
in a nonhermetic room with water vapor through atomizing of water which is at room temperature, To in-
crease the degree of saturation of the air one resorts to elecirical heating of the water in the reservoir

of the humidifier. ‘

Experiments were performed in which the humidifier was placed in the center of the floor of a room
with a volume of 97 m® and a height of 3.5 m. After 2 h of operation of the humidifier the relative humidity
of the air in the room had increased from 50-60 to 75-80%.
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CALCULATION OF THE THERMAL CONDUCTIVITY
OF POROUS MATERIALS

V. V. Zotov, A. N. Lepilkin, UDC 536.212
S. I. Nozdrin, and A. M. Tertychnyl

The analytical determination of the generalized conductivity coefficients of heterogeneous systems,
which include porous materials, foam plastics in particular, is based on the study of models of these sys-
tems. A three-dimensional cubic lattice at the nodes of which are arranged identical pores having different
shapes, most often cubical, is widely used as the model. A model with spherical pores is considered as
insufficiently flexible since its porosity (1) does not exceed 74%.

The studies which we have made, however, show that foam plastics consist mainly of closed pores,
with the porosity of these materials being greater than 74%. This is explained by the presence of pores
of different diameters in foam plastics. Therefore foam plastic can be considered as a material containing
several porous structures, with the structures having fine pores forming the walls of the large pores.

Assuming that all the porous structures are constructed on the basis of one model — a cubic lattice
with spherical pores at the nodes, and considering that the thermal conductivity coefficient of the binder
(\y) is greater than the thermal conductivity coefficient of the gas in the pores (\y), equations were obtained
for calculating the effective thermal conductivity of the porous structure (A):
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By successively using the equation obtained for each porous structure, starting with the structure having
the finest pores, one can calculate the thermal conductivity coefficient of a material of any porosity (0 <
1< 100%). The values of the thermal conductivity coefficients of various materlals calculated by the pro-
posed method agree well with experimental values of the coefficients.

Dep. 3215~74, September 25, 1974.
Original article submitted January 9, 1974,
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EXPERIMENTAL STUDY OF THE TURBULENT BOUNDARY
LAYER AT A LONG ROUGH FILAMENT

V. M. Shulemovich UDC 532.526

In the article experimental results are presented on a study of the characteristics of the boundary
layer at cylinders with a diameter d =2 mm, performed with an impinging stream velocity u,, =35 m/sec,

three heights.h, =2, 35, and 85 y of the roughness protuberances. and elongations % =245-1740; y and x
are the transverse and longitudinal coordinates,

The velocity profiles in the boundary layer were measured with a flat pneumatic probe for 10 cross
sections along the filament in each experiment, corresponding to a certain height h,.. The fields of momen-
tum loss ¢, and displacement &, the form parameter H =4,/8,, and the thickness § of the boundary layer

were determined using the experimental velocity profiles. The local friction coefficients c; were found
from the integral momentum equation,

The turbulent intensity ¢ of the longitudinal component of the pulsation velocity at the filament was
measured in four cross sections with a constant-resistance thermoanemometer. Some results of these
measurements are presented in Fig. 1.

It is shown experimentally that the roughness function & in explicit form does not depend on the trans-
verse curvature.

The effect of the curvature was manifested, for example, in the fact that the corresponding values of
the average (cy) and local friction coefficients at the cylinder are the higher compared with those for a
plate, the greater the height of the roughness protuberances  and the elongation of the cylinder. The thick-
ness of the boundary layer and the form parameter are lower at a cylinder than at a plate,

The maximum differences obtained in these experiments for cy. 6. and H at a rough cylinder and at
a plate are about 100, 50, and 14%, respectively.

The experimental data are in satisfactory agreement with the results of theoretical calculations,
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EXPERIMENTAL INVESTIGATION OF BUBBLE -FORMING
ACTION OF PORES

I. I. Markov UDC 536.423.1

The bubble-forming action of pores in the bolling of a liquid was experimentally investigated. The
following aspects of this question were considered.

1. How does the solution of air from pore cavities take place in open and closed vessels?

2. How does residual gas in pores affect their activity, and how does the temperaturehead AT, which
determines the onset of bubble formation on the isolated potential boiling center. depend on the pore dia-
meter?

3. What effect does mechanical action have on the bubble-forming action of pores?

It can be concluded from the obtained experimental data that gas from pore cavities dissolves in a
closed vessel at a lowey rate than in an open vessel. Pores can act much longer as potential boiling cen~
ters in a closed vessel than in an open vessel. The gas solution rate increases in open and closed vessels
with increase in temperature of the liquid from room temperature to saturation temperature Tg, The
smaller the diameter of the pore (capillary) outlet, the greater the rate of gas solution. Pores which have
lost all their gas become completely filled with liquid at liquid temperature T < Tg and cease to be active
boiling centers.

A reduction of the partial pressure of gas in a pore leads to an increase in the temperature head AT
at which bubble formation begins., In the uniform field of a copper heater the temperature head increases
linearly with reduction in pore diameter. On a glass heating surface, beginning at a pore diameter of 0,1
mm, there is a sharp increase in temperature head with reduction in diameter of the pore (capillary).
Since the air solution rate increases with reduction in pore diameter it can be inferred that on pores with
diameter d <0.1 mm the partial pressure of gas at the start of boiling Is practically zero, which leads to
considerable overheating.

In the nonuniform field of a heater an increase in pore depth leads to a reduction of the active pore
radius.

Vibration of the heating surface in a vertical direction with frequency 0 <f = 200 Hz and amplitude
0.2=<A =1.25 mm does not alter the number of vapor-forming centers. On functioning vapor-forming
centers an increase in the frequency of the vibrating heating surface reduces the bubble breakaway diame-
ter Dy, which in this case can be calculated from the formula:

Dy = ‘3,/85ng y

where c is a constant which dependsonthe kind of liquid; R is the pore radius; g is theacceleration. The
frequency £, of bubble breakaway increases; the boiling rate is £;D,.

Mechanical action at sites of breakaway of liquid from the heating surface leads to impact boiling of
theliquid . If a break occurs in a passive pore (capillary), this site becomes a stable boiling center.

Dep. 52-75, October 30, 1974.
Original article submitted September 17, 1974.

RELATION BETWEEN ACOUSTIC SIGNAL AND OSCILLATIONS OF
A VAPOR FILM DURING UNDERHEATED FILM BOILING"

V. V. Chekanov and L. G. Berro UDC 534.8:536.423.1

It has been noted [1-3] that in the case of a pronounced underheating the film boiling which oceurs
at a thin wire is accompanied by the generation of sound — a whistle at a pure tone. Our purpose in the
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Fig. 1. Experimental apparatus. 1) Light source; 2, 4) stabilized
de power supplies; 3) heater; 5) objective lens; 6) slit; 7) photomul-
tiplier; 8) all-purpose power supply; 9) oscilloscope; 10) hydrophone;
11) spectrum analyzer,

present study was to detect the oscillations of the vapor-filled cavity which appears around the heater, to
determine the frequency of these oscillations, and to determine the relationship between these oscillations
and the amplitude — frequency spectrum of the sound emitted under these conditions.

Figure 1 shows the experimental apparatus; the experimental procedure is described in 4]. The ap-
paratus is assembled around an OSK-2 optical bench. The processes which occur at the surface of the
heater 3 are observed in transmitted light, so that a clearly defined shadow of the vapor-filled cavity is
found on the cathode of photomultiplier 7. The oscillations of the cavity modulate the light flux, and the
electrical signal from the photomultiplier, which is fed to oscilloscope 9, is proportional to the displace-
ment of the vapor film.-

The noise which occurs upon boiling is detected by hydrophone 10 and studied by the SK4-3 noise
spectrum analyzer 11, The experiments are carried out under conditions such that the underheating of
the liquid is

ATuﬂd = Tsét_ T]_\ ~ 35 - 60°.

The boiling occurs on thin tungsten wires 0.12 and 0.3 mm in diameter, immersed in aleohol (ethyl or
propyl). The experiments are carried out in vessels of various sizes and shapes. The use of a dual-
trace oscilloscope makes it possible to determine the phase relations of the signals from the hydrophone
and from the photomultiplier.

Analyzing the data, we can draw the following conclusions.

1. The emission of a pure acoustic tone under these conditions results from oscillations of the
volume of the vapor-filled cavity around the heater.

2. In the case of underheated film boiling, the frequency of the principal maximum in the spectrum
of the acoustic signal is equal to the frequency of the volume oscillations of this cavity.

3, As the heat flux is increased, the frequencies of the principal maxima of both signals decrease.
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FORCED COQLING OF CONSTRUCTIONAL ELEMENTS
IN CRYOGENIC DEVICES

A, V. Zhukovskil UDC 536.24

It is common practice to reduce the heat leakage to the cold zone in a cryogenic device by cooling
the constructional elements by means of the escaping gas; the heat leaks and temperature distributions in
such elements may be derived from an analytical solution for the one-dimensional thermal conduction in
a rod of constant cross section, part of which is cooled by a flow of cold gas towards the warm end of the
rod. The thermal conductivity of the rod is assumed constant and equal to the integral mean value for
the cooled part A and uncooled part Ay . The following quantities are specified: the cross section of the
rod F, cooled length I, and uncooled length L; cooled perimeter of the rod U, gas flow rate G, gas temper-
ature at the inlet to the cooling section 37, and temperatures at the ends of the rod: hot end T; and cold
end T;, as well as the heat-transfer coefficient to the gas @, and the mean speclfic heat of the gas Cp+
Expressions for the temperature distribution in the rod, the temperature of the coolant, and the
heat leak to the cold end are derived in dimensionless form; the solution contains not only the boundary
conditions for T;/T, and 4;/T;, but also the three quantities chl/xF, aUl/Gey, and GepL/ApF (or combina-
tions of these), If the entire rod is cooled by the gas, it is found that the heat leak to the cold end as a
ratio of the heat leak without cooling, Q;/Qpax- 1S governed solely by. chl/xF and aUl/Ge
AF/1(Ty—Ty), and this relationship is shown in Fig. 1, which allows one to deduce the heat
the rod.

,» where Quay =
[ieak @ along

Experiments indicate that the calculations give somewhat overestimates for the heat leads, since
the solution does not incorporate the variation in the thermal conductivity of the rod and the heat-transfer
coefficient along the length. Detailed calculations have been made for particular rod materials and cooling
agents on the basis of the temperature dependence of the properties, using numerical integration; the
general trends shown in the figure still persist.

These simple solutions can be valuable in estimating heat leaks and temperature distributions in gas-
cooled structural elements of eryogenic equipments, and also for defining the gas flow needed (with a cer-
tain safety factor) to produce a given reduction in the heat leak to the cold zone.

4

Tmox.
Fig. 1. Relative heat flux from cooled

g rod as a function of dimensionless quan-

\\\ tities. Values of aUl/Ge_: 1) 0.1; 2)
\ 0.4; 3) 1.,0; 4) 2.0; 5)5.5); 6) 10; 7) .

Above the broken line the difference is

o4 less than 10% from the results with vari-
able thermal conductivity for a stainless-~
steel rod cooled by helium at 20K < T=
300K.
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PROCESSES IN HEAT BRIDGE FLUSHED VIA A
MEDIUM AGAINST THE HEAT FLUX

L. M. Rozenfel'd and A. G. Korol'kov UDC 621.1.016.4:621.59+536.24,242

Heat bridges occur in cryostats and other such devices and are sources of unwanted heat leak, which
can be reduced by cooling the bridges with the cold gas flowing against the heat flux [1].

Consider a bridge between cold and warm media cooled as shown in Fig. 1; the conditions are static,
with given temperatures for the media and given heat-transfer coefficients at the ends and middle,

It is assumed that the physical properties of the bridge and gas are constant, and the longitudinal
thermal conduction in the gas is neglected, which gives a solution to the thermal-conduction equations for
the bridge and the energy equation for the gas in terms of the dimensionless temperatures of bridge and
gas averaged over the cross section, the values being expressed in terms -of the Stanton and Biot numbers,
together with the geometrical similarity of the cooled part, in conjunction with dimensionless quantities
that represent the heat transfer at the ends of the bridge, which have been given in [2].

The characteristics of such a bridge are presented, in particular, as heat fluxes at the hot and cold
end as ratios to the heat flux without cooling, as well as the gas temperature as a ratio to the temperature
difference between the media, again in terms of the dimensionless variables.

Ananalysis is presented for the effects on the characteristics from the dimensional parameters of
the bridge and gas over a wide range.

. e i .
Medl:,m ! Medl;.lm I Fig. 1, Model for calculations on
! e 2 a cooled heat bridge. T and T,
- are the temperatures of the cold
:l«L :Qa —t and warm media, G is the cooling-
3 gas flow rate, and Q; and Q, are
the heat fluxes, respectively, into
the cooled end and into the cooled
T bridge.
& 3 A
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PROPERTIES OF THE RESISTANCE OF ROTATING POROUS BODIES

S. I. Kulikovskii UDC 66.071.6

The physical processes accompanying the flow of a liquid or gas through a cylindrical, porous, rota-
ting body are analyzed in the article. Models of the serial type are used to describe the nature of the flow.
Using an equation of flow with allowance for inertial losses with slippage, an expression is obtained for
the pressure distribution both in a stationary and in a rotating porous rotor. Values of the permeability
coefficients are given for molecular and viscous modes of flow. Two means of gas supply are used: along
and against the effect of the centrifugal field. The data of the experimental studies are compared with
computer calculations.
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With gas flow along the effect of the field and a low rotation speed the distribution hardly differs from
the distribution in a stationary diffuser. With an increase in the speed the pressure increases in the peri-
pheral regions and decreases in the middle part of the rotor. The smaller the permeability, the smaller
the distance from the axis at which this increase begins to appear. The reason for this effect is the non-
linear relationship between the stress tensor and the tensor of the deformation rate.

With movement of the gas against the effect of the field the resistance of the diffuser increases with
an increase in the rotor speed. This is due to the joint effect of two forces — the resistance of the porous
material and the centrifugal field.

Dep. 3217-74, September 27, 1974.
Original article submitted March 29, 1974,

ISOTHERMAL MOVEMENT OF VAPOR IN A TUBE

Ya. A. Levin, E, B. Filippov, UDC 532.517.4
and A. A, Yarkho :

The established isothermal turbulent flow of a vapor along a round cylindrical tube is examined in
a one-dimensional formulation to find the dependence of the pressure losses in the pipelines of a heat-ex-
change apparatus on the flow rate of dry vapor with allowance for the real properties of the latter. The
equation in virial form, in which terms containing p to the second power or higher were neglected, was
used as the equation of state of a real gas. The equation of state was solved for p, Of the two roots of
the equation of state obtained, the smaller, satisfying the region of superheated vapor with a temperature
below the critical temperature, was taken.

It is known that up to Mach numbers M = 0.8 the coefficient of resistance £ is a function only of the
Reynolds number Re. For the movement of a gas along a round cylindrical tube, Re is, in turn, a function
of the viscosity coefficientn, which depends only on the temperature when the pressure variations are not
very large. Consequently, with isothermal gas flow Re remains constant along the pipe, which means the
coefficient of resistance ¢ will also be constant.

With these conditions the system of equations of continuity, motion, and of state can be integrated.
After several elementary transformations the expression for a long pipeline obtained as a result of the in~
tegration will have the form

G2

B 1 !
(=) + 5 (B~ = RTE 5, (1)

6RT
where p is the pressure; T is the temperature; R is thegas constant; B; is virial coefficient of the equa-
tion of state; G is the mass flow rate; F is the cross-sectional area of the pipeline; ! is the length of the
pipeline; D is the inner diameter of the pipeline; ¢ is the coefficient of friction.

Equation (1) represents a general expression connecting, with the assumptions indicated above, the
parameters of a moving isothermally real gas. From if one can obtain the well-known expressions for the
determination of the pressure lossesduring the movement along a pipeline of an incompressible liquid (the
Darcy — Weisbhach equation) and of an ideal gas.

Equation (1) can be used to determine the mass flow rate of a vapor moving isothermally along a
pipeline with known geometrical characteristics when the pressure drop is given. If Re < 10° then the
Blasius equation can be taken for the coefficient of friction. Then after transformations of Eq. (1) we ob-
tain

D4‘75
IRTY"%

; B

G5 = 2,07 {pg_pz + 3R1T (pg_pa)], @)
A comparison of calculations by Eq. (2) and experiments with nitrogen and helium showed that the

error in the determination of the mass flow rate of a vapor moving isothermally along a cylindrical pipe-

line does not exceed 7%. Not allowing for the true properties of the vapor can lead to an error of 20-30%.,
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AERODYNAMIC CHARACTERISTICS OF SLOTTED DRAINS

E. P. Vishnevskil UDC 532,542

Slotted drains are analyzed, with the area F(x) of the air collecter and width ex) of a slot being func-
tions of the distance from the dead end.

In this case the velocity distribution along the axis of the air collecter is

" w shud (x*, 71, Iy vioy)

W ==

Wy shul,

where x* is the dimensionless coordinate; I. are geometrical invariants (dimensionless complexes of the
structural parameters of the device); u is the flow-rate coefficient.

The velocity in a slot is

v chpd (¢, I, Iy, o))

o= —— =

v, chuly

The coefficient of aerodynamic resistance is
L=cth?pl,—1.

The variation of the velocity distribution in a slot is

1
== _—— -100“ .
K (l chpl, ) %

Four particular cases are examined for which calculating equations are derived. The specific con-
tent -of the invariants Ij in this case is determined by the geometry of the dévices in accordance with the
equations ' '

i
s(x)
11=S F (x) d,
@ (5%, Iy I ,..,)=S %(é_;_dx
0

Dep. 3256-74, October 18, 1974.
Original article submitted August 23, 1973.

HYDRODYNAMICS OF TURBULATORS FOR THE TWISTING OF
THE AIR STREAM AT THE ENTRANCE TO A TUBE

A, M. Voitko UDC 532.5

A preliminary analysis of the energy expenditures in overcoming the resistance of tubular heat-ex-
changers having a turbulent air stream shows that a considerable part of the pressure head is expended in
overcoming the resistance of the turbulators, in connection with which it is desirable to determine the effect
of their structural properties on the coefficient of resistance. The investigation was concerned with
three designs of turbulator: with a smooth tangential connection of air flow formed by half-circles with
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Fig. 1. Hydrodynamic characteristics of turbulators: a) &=
( pvt), turbulator with tangential airflow axb = 140X 140
mm (1), 160x160 (2), 180X 180 (3), 400x400 (4), 130x200
(5). and 213x130 mm (6)); turbulator with flat vanes (g =60°,
D =406 mm (7)); turbulator with smooth bending of vanes (g =
30° (8), 45° (9), 60° (10), D =220 mm); b) swirler with
smooth bending of vanes, £ =f(sin 8) valid for pvt=5-50
kg/m? . sec, 1, 8, 5) 3 =60, 45, and 30°, respectively. ;=
D=220mm, 2, 4, 6) 83 =60, 45, and 30°, respectively, [; =
D =406 mm, c=+25%; c) dependence of Ap (mm HZO) on
l,/D and pvy fpvy=39 (1) and 26.7 kg/m2 < sec (2)].

centers located at equal distances from the tube axis and with an open or closed diaphragm (tube diameter
D =200 mm, diaphragm diameter d = 100 mm with the inlet cross section axX b, where a is the channel |
length and b is the channel width), a register with eight flat vanes mounted at an angle g = 60° to the gen~
eratrix of the tube (tube diameter D = 406 mm), and a turbulator alsc with eight turbulating vanes but

with the angle g varying smoothly from 0° (at the entrance of the air stream to the turbulator) to 30, 45,
and 60° (at the exit of the air stream from the turbulator with a tube diameter D = 220 mm). For the sec-
ond and third turbulator the length was equal to their diameter.

The studies of the coefficient of resistance ¢ =f{pvt) of the turbulatorsfromthemassvelocity navery
narrow cross section of the channel were preceded by studies of the velocity fields {tangential and axial)
of the turbulent stream in the initial cross section of the tube ¢ /D = 1.5 for the first turbulator and I/D 3.7
for the third turbulator,! is the running length ofthe tube), as a result of which it was established that their
difference is insignificant (with 8 =60°) whereas their coefficients of resistance differ considerably from
one another (Fig. 1a).

The latter, which is energetically advantageous, distinguishes the third turbulator fromthefirst, in
connection with which it was studied in more detail. The variation of the difference in static pressures
betwsen the entrance crosssection of the turbulator), (g = 60°)and along the lengthof its channels (l2 isthe
current length of the channel) was checked for different values of pv; (Fig. lc). It is seen from Fig. 1a
that the coefficient of resistance decreases considerably with a decrease in the angle 8 (third swirler),
although reorganization of the velocity fields occurs in this case with a shift in the high-velocity zones
from the wall of the tube toward the axis, which reduces the intensity of heat exchange between the air
stream and the wall of the tube. Therefor the choice of a turbulator ineach concrete case mustbe justified
by a technical —economical calculation.

Dep. 55-75, November 6, 1974,
Original article submitted April 2, 1973,
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NUMERICAL SOLUTION OF THE HEAT EQUATION
WITH A CONVECTIVE TERM

N. V. Astanovskaya and A. A, Pirozhenko UDC 518,5:517,946

We- consider the problem of the propagation of heat in a moving, chemically inert medium for the con-
dition that energy sources are absent and the energy dissipation is negligibly small. The boundary condi-
tions for the heat-propagation equation

_ﬂp_gtﬂ_)_ -+ div (upCpT — A grad T) = 0,
%G, o=1,2, 1)
with account of the symmetry of the heating conditions and the geometry of the region being considered are:

1) the symmetry conditions

T (13, 0, 9)

o, =0, Iw<x1 <lh, t>0 (2)
aT (0, x,, ¢ »
_(Ex’l‘_z_)=0, 0Lx <l >0 (3
2) the given temperature distributions
T (x5, x4, 8} =Ty, (%, %) € S — the external surface 4)
T (x5, %9, 8) =Ty, 0. %3l —the surface of the base (5)

For a numerical solution of Eq. (1) with the boundary conditions (2)-(5) and the initial condition
T (% %5 0)=T% (3, %)@

we use an absolutely stable scheme, constructed on the basis of a local one-dimensional method [1], which,
for the chosen order of approximation, converges with rate ~o (lh| +7),

. The velocity distribution of the gas phase is given, and is an approximation of the motions of the gas
phase determined in [2] for each interval of critical Rayleigh numbers [Raffi, RafT].

In the Smdy we carry out a theoretical and numerical investigation of the stability and the conver-
gence of the proposed scheme, and we represent results of calculations of the temperature fields for chan-
nels with various configurations of the cross section.

We note that the presence of free convection can considerably influence the nature of the heat trans-
fer on the base and the behavior of the local Nusselt number

aT
Nu(x) = - Oy 012
O=3r,—1,)

where Tx is the average temperature over the volume.
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OPTIMAL SYMMETRIC TEMPERATURE REGIME FOR A PLATE

V. M. Vigak and A. A, Fedorishin UDC 536.21:539.377

The problem of the control of start-up processes in thermal power equipment is connected with the
problem of determining the optimal unsteady temperature regime for separate elements, ensuring over
the entire extent of the transient process, given limiting admissible temperature stresses at the maximally
stressed points of the element,

To determine the optimal unsteady temperature regime in an unbounded plate of thickness 2h we con-
sider the solution of the heat equation, for which as boundary conditions the condition of symmetry of the
temperature field over the thickness of the plate is chogen, and the condition of the equality of the tempera-
ture stresses on the outer surfaces is admissible, which is written in the form

1
~.;_ "I (o, Fo)dp —T (1, Fo) = b~—cT (i, Fo). 1
—i

Here the left side of condition (1) is an expression for the calculated relative temperature stresses on the
surface of the plate p =1, and the right side is an expression for the admissible relative temperature stres-
ses S=[(1 — v)/aE o, the variation law of which depending on the temperature is assumed to be approxi-
mated by a broken line; in separate temperature ranges these stresses are represented by the linear func-
tion S=b — ¢T(1, Fo).

The solution of this heat-conduction problem is obfained in the form

& o
T (p, Fo) = - A, ch A0 exp (A7 Fo) + Z) Ay cos Xop exp (— AZ Fo), (2
where A; and A, (0=2, 3, ...,) are the roots of the corresponding characteristic equations; the coefficients
A,n=1,2, .,.,) are determined from an infinite system of algebraic equations, obtained on the basis of
the initial condition.

It is shown that unlike the heat-conduction problem in the usual formulation, the optimal problem
with a constraint based on the stresses, besides solution (2), has a particular solution for x; =0.

In a similar manner we find the principal and particular solutions of the optimal heat-conduction
problem for a constraint on the temperature stresses in the middle plane of the plate.

The optimal temperature regime that is found allows us, for example, from the boundary condition
of second or third kind on the outer surface of the plate, to determine a control function ensuring given
admissible temperature stresses, or a thermal flux, or the temperature of the heating medium for the
corresponding Biot criterion, or, on the contrary, the Biot criteria for given temperature of the heating
medium.

The solution obtained for the optimal unsteady heat-conduction problem can be used for determining
the control function needed for automatic control of the start-up regimes of thermal power equipment.
NOTATION

p =x/h, dimensionless coordinate; x, axis of coordinates with origin on the middle plane of the plate;
Fo=a7/h?, Fourier criterion; «, thermal-conductivity coefficient; b, ¢, constant coefficients determined
from the given straight line of admissible relative temperature stresses S; v, o, the Poisson ratio and
the linear-expansion coefficient; E, elastic modulus.

Dep. 54-75, November 22, 1974.
Original article submitted January 9, 1974,
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SOLUTION OF A THREE -DIMENSIONAL HEAT-CONDUCTION
PROBLEM FOR AN INHOMOGENE OUS ORTHOTR OPIC SEMI-INFINITE
HOLLOW CYLINDER FOR MIXED BOUNDARY CONDITIONS

P. Z. Livshits UDC 536.2
Assuming a power dependence for the thermal~conductivity coefficient on the radial coordinate p we

construct solutions for the equation of steady heat conduction for an unbounded hollow cylinder correspon-
ding to homogeneous mixed boundary conditions

. 1 oT
p=1+4:T =0, I>0; . hJ
v == AraR dp
{ oT
p=1-=4h: Y P =0, — .
TR Top =% Tm<i<e

Using the solutions that have been constructed we consider two problems on the arbitrary heating of the
face of a semibounded cylinder for homogeneous mixed boundary conditions (i =c/R):

i or .
o=l+7\,:Tv=O, 0LEKE TR . __.._ﬁa; +Tv-_—0, f°°<§<0'
1 or 1
—=1—h: 2y 7 =0, — < @)
PRk TR ® =i

E=0:T,=f(), 1—=A<p<l+M
a7,
RrgR dp

I/ . ) @)
TR T a0 TiEs

p=1+44:T =0, 0KE<0;

=0, —I<E<0;

p=:l——l:

E=—nIT, =F)h 1—Ap<1+h

We solve the problem of the uniform (in the axial direction) heating of a section of length 2¢ of the
external lateral surface of an unbounded hollow cylinder for heat exchange with a medium at zero tempera-
ture on the remaining part of the external surface and on the entire internal surface.

We find a solution for the problem of an ‘unbounded cylinder heated over the entire external lateral
surface, except for a finite (2¢) section of heat exchange.

In all the problems considered in the article the conditions on the lateral surfaces are satisfied ex-
actly. The coefficients in series based on homogeneous solutions are determined from the normal (accor-
ding to Poincare and Koch) system of algebraic equations,

We obtain asymptotic equaﬁons which enable us to find the intensity of the radial thermal flux on the
external lateral surface near the separation line of the boundary conditions.

We carry out a conversion to cases of modified boundary conditions — the thermal insulation of the
part £ < 0 of the external surface (i.e., h,,~-0). We consider in detail the axisymmetric problem with
modified boundary conditions in the particular case m=-—1. Results of the calculations make it possible
for us to judge the effect of the orthotropicity of the material of the cylinder and the finiteness of the length
of the heating section for various relative thicknesses b/a of the cylinders.

NOTATION

p=r/R, £ =z/R, dimensionless coordinates [a) external, b) internal, R =@ +b)/2) mean radil of the
cylinder]; A =a —b)/2R, half of the relative thickness of the cylinder wall; hm hrbs relative coefficients
of the heat transfer on the external and internal surfaces; T, ., £)cosvi? (m/2)r/g2 @, particular solu-
tmn of the heat—conductlon equation 8/8p oAy @ T/80)) +8/0¢(\ /0 - 8 T/8¢) +8/9% (PA, @T/0¢)) =0; gy —xq/xr,
2 — (m/2)=0; A;=A{p™, thermal-conductivity coefficients (\}=const, i=r, @, z).
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USE OF ORDINARY DIFFERENTIAL EQUATIONS TO DESCRIBE
THE HEATING OF ELEMENTS OF ARBITRARY SHAPE

A. Kh. Gorelik UDC 536.24.02

Lately much consideration has been given to a description of the heating of turbine apparatus, for
example, in order to construct programs for the increase of the parameters of the vapor or gas during
start-up based on given limiting differences or velocities of temperatures at various points of the elements
(see, e.g., [1]).

In [2] ordinary differential equations were obtained that connected the temperature of the metal at
separate points of a cylinder and a plane wall with the temperature of the heating medium, which varied
in time.

In the present article the results obtained in [2] are generalized for the prediction of the heating of
elements of arbitrary shape. The structure of the equations of heating are determined, and the relations
between the coefficients of the equations, the shape of the elements being heated, and the initial conditions
are shown.

For heating (cooling) of bodies by a heating medium having the same temperature on the section sup-
plying the heat. with insulation from the unheated section of the surface or with loss of heat on this section
it is shown that the temperature at a point (coordinates of the point x, y, z) of the body being heated 8(x. y.
z. t) with variation of temperature of the heating medium 8,(t) in time t can be represented as a sum of the
reactions of an infinite number of aperiodic links with coefficients of the force My (x, y, z) that decrease
as a function of the number, and with time constants T,, and also the initial damping component:

nv
= N0
My, (%, 4, 2) No(x, y,2)Tn
8l 4z 9=0 LD T
(v, 9, 2z, 9 O(S);«x Tt 1 s 2 P

where s is an operator; My (x, y. z) are coefficients that depend on the shape of the body being heated and
the coordinates of the point; T, are coefficients that depend on the shape and conditions of heat exchange
on the surfaces of the body being heated; Ny (x, y, z) are coefficients that depend on the initial temperature
distribution, the coordinates of the point, and the shape of the body being heated,

In accordance with this expression, the temperature at any point of the body being heated can be de-
termined as the solution of the following ordinary differential equation with right side

n=00 m=o n=o0

Nawe+nlew oz =] SMux 4,2 [1 T+ 06000,
)
n=1 m=} n=1
nkm

where p is a symbol of differentiation, for the initial conditions:

=00

8%, 1 7 Dlmp= S Nn (5 1, 2);

n=}
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de(x, y, z, 1) ' o Np(x, 9, 2) |
dit i=0 oy Tn
a8 (x, y, z, 1) _(_l)m"i" Nn(x, 4, 2)
dim =0 TR
n=1

As can be seen, for the determination of the temperature at any point of the body being heated we
must know in the general case not only the initial value of the temperature at this point, but also the initial
temperature distribution; then it is possible to determine N, ¥, 7).

In the article we also consider the case of heating of a body on two sections of the surface by a me-
dium having different temperatures on these sections.

LITERATURE CITED

1. V.S.Ermakovand G. I. Khutskii, Inzh, ~Fiz. Zh., 14, No. 2 (1968).
2. A, Kh. Gorelik and M. A. Duel', Teploenergetika, No. 2 (1968).

Dep. 49-75, December 16, 1974.
Original article submitted October 23, 1972.

EXOTHERMIC RADICAL RECOMBINATION ON SURFACE OF SOLIDS

V. 1. Gryadun and A, N. Gorban' UDC 536.244+541.183

Recombination of free radicals, as is known [1], is usually an exothermic process. Solids on whose
surface radicals (e.g. hydrogen, oxygen, nitrogen atoms) recombine are catalysts of this reaction and
simultaneously absorb the energy released (of the order of a few electron-volts for each molecule formed).

The problem of heat distribution in a spherical solid on whose surface chemisorption and radical re-
combination take place is considered.

The thermal energy flux of radical recombination and the heat exchange with the medium are taken
into account in the boundary conditions. The initial conditions assume that the temperatures of  the
sphere and its surroundings are the same.

The heat flux appearing in the boundary condition depends on the recombination coefficient and the
concentration of chemisorbed radicals. which depends, ln turn, on the surface temperature and the time.
The Langmuir kinetic equation [2] is used to find the concentration of chemisorbed radicals on the surface.
The coefficients of this equation, however, are functions of temperature, which makes it impossible to
obtain an accurate expression for the kinetics of heating of the solid. In the case of low recombination co-
efficients on the given surface or low partial pressures of free radicals in the gas phase the solids are
only slightly heated and the Langmuir coefficients can then be regarded as approximately constant during
the experiment. It then becomes possible to find an expression for the heat flux and solve the posed prob-
lem, which in the considered case reduced to the known problem of heating of moist bodies in a medium
with constant temperature, when evaporation occurs at the surface [3].

Values of the steady heating of various powdered crystal phosphors when hydrogen atoms recombine
on them are given in [4]. These data agree well with the results of our calculation for the steady case.
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DISTRIBUTION OF TEMPERATURE, HEAT FLUX, AND
ELECTROMAGNETIC FIELD IN A PLANE CONDUCTOR WITH
TEMPERATURE-DEPENDENT CONDUCTIVITY (LOW FREQUENCIES)

R. 8. Kuznetskii UDC 538.56

In the determination of the distribution of temperature and electromagnetic field in current-heated
conductors when the heat flux is high the local variation of the conductivity with temperature has to be
taken into account. In a plane conductor Ixl <1 of thickness 2a with cooled surfaces the established steady
distributions of temperature and electromagnetic field are described by a system of nonlinear differential
equations -

t' = —ogu-v®), u'’=-—n%v, v’ =niou, (1)

and h=—in"%e’, with the following, for instance, symmetric boundary conditions: u(l) =1, v(1)=t() =u'(0) =
v'(0)=t'(0)=0 (0 =x=<1). Here x is the coordinate, t is the temperature relative to the surface tempera-
ture of the conductor, ¢=o(t) is its conductivity (the dimensional conductivity when t=0 is gg), g=—1t'is
the heat flux density, e=u +iv is the complex amplitude of the electric field (the dimensional amplitude at
the surface is eg), and h=n"%(y' — iu') is the complex amplitude of the magnetic field; the corresponding
dimensionless quantities are a, (0)/2) + [e@)®/ @ — 8401, 0p. 0geda/ 2 — 6s0). € and ayeq; n=aVogpw is the
frequency criterion; w is the angular frequency of the current; x is the thermal conductivity and y is the
_ { 1, n=0
0, n=0"
resistance R =n%/20a xv'/|e'|? lX=1 and the internal inductance L= a/2) - @'/1e"1?)l, -, per unit square
surface of the conductor. Below we consider the behavior of the functions t(x), q(x), e(x), and h{x) and
the functionals in the limiting case n«1 (and n=0), which is nontrivial when ¢’ = 0.

absolute magnetic permeability; 6 From the functionals of the problem (1) we introduce the

When n =0 system (1) is integrated in quadratures, giving t(x) and q(x) (which we denote henceforth
by the superscript 0), e, and h(x):

AT

e=1, ’h=q=V 2§ odt, (1—x12 \

=3 (2)
0 ] / !\(O)mit

£
the last equality determines the constant t(0) when x=0. For nonzero n«1 we obtain for lel, p=arge, and
Ihl, 9 =argh,

Y . i R ; ) , i
ey l—n%y—in®® e 1—nt [y— Y _(f°)'] ~ 1, @ —n0 0, Il KL (3)
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borgbatd iy, (e e (1 S LR n*% <0, W<, (4
x 1 x .
where ¢’=0(t?, J&)= g [@Y's — oy ldx, y&) =S de t%%x and #(x) is the solution of equation
0 x 0
8 4 (0% B = a0 2y — ()2, B (1) =& (0) = O. 5)

For R and L we have, respectively,

1 4 : 1
20R o {1— [q“n(l)P Iy’ (1)1’+q°(1)1(1)]}z s ©)
2 y' (D) nt T . y' (1)
W T e F U= Tmar “”‘Jr?"om"(m}g‘_Tcz%(B]?” @

All the obtained expressions are then made specific for the case of an inverse linear temperature
dependence of the conductivity o) = kt+1)~! (to which Fig. 1 refers), where k= @) og/N) « B/ @ — Bgg)]
is the nonlinearity criterion of the problem @ is the temperature coefficient of the resistivity). In particu-
lar, when k » 1 we obtain the asymptotic relations

el 1O} ;2;;
]/ Ink~
fl(l)z T ~h (l), (8)

. k
0
Re~R V-——lnk Lo L0

Ing °*

where R%=(2oa)~!, L°=ya/6 correspond to k=n=0. The asymptotic formulas for the quantities of type
(8) are valid irrespective of the value of n owing to their known self-similarity in the criterion n when k>
max (1; n?).
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THERMAL FIELD OF AN INHOMOGE NEOUS PLANE WITH CUTS

N. V. Pal'tsun and A. G. Gorban' UDC 517.95

Let us determine the steady-state temperature field of a plane of unit thickness with a circular cutout
of radius R. The plane is in contact with a circular plate of the same radius but of a differentmaterial.
Along the line between the materials there are n cuts. In the plane and in the plate there are heat sources
of strength g; and gy, respectively, and at the edges of the cuts the temperature or the heat flux is specified.

We first determine the influence of the heat sources on the thermal field of this inhomogeneous plate,
but without the cuts. We work from the equation for the temperature proposed by Prusov [1], which uses
plecewise-holomorphic functions:

| . |
B@+R () =T+ o

F@+ () 5 ( T = @i, 2
Fj@)— (_15_)2 Fy (i:—“z‘) = ‘:" y % (Ty+ ). )

Here Fg(z) = Fj()dz (j=1, 2); Fj(z) are functions which are holomorphic everywhere in the regions D (z|>
R), D+(Iz| <R), except at the points z =2j and z=R%z7!, and 9 (x, y) is some auxiliary harmonic function de-
fined in the same region as T(x, y). Assuming ideal thermal contact at the line L. separating the media,

we find the linear ~~njugate problem
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(Fy—Fy)* - (Fy— F)~ =0on L,
(Fy L kF)* — (Fy + EFy) = = 0onlk, 4)

where k=k;/k,, and k; and k, are the thermal conductivities of the materials in regions D™ and D*, After
determining the plecewise holomorphic functions Fy(z) and F,(z) from Eqgs. (1), we find the temperature
field of the inhomogeneous plane.

In solving this problem of a homogeneous plane with cuts we assume that boundary condition (4) holds
in regions in which the media are in contact, Assuming this boundary condition, we write

Fy(2) — Fi(2) =F5 (), zeD%,
Fo(z) —F; (2) =—F3(2), zeD~, &)
Fy(2) +kFy () =F4(2), 2D =D~ +D*

Knowing that the functions F;(z) and F,(z) are piecewise-holomorphic over the entire plane of the
complex variable, except at the cuts and at isolated singularities z; and Rz, we use (5) to find the func-
tions Fy(z) and F,(z) in terms of Fs(z) and F,(z). The determination of the temperature field in the regions
D~ and DF from (1)-(3) reduces to the problem of determining two functions, Fy(z) and F,(z), which are
piecewise-holomorphic in region D, as functions of the specified boundary conditions at the cuts. We as-
sume that the values of the functions n; and their normal derivatives at the sides of the cuts vanish,

This problem has been solved in closed form for Dirichlet and Neumann boundary conditions speci-
fied at the cuts. '

The solution method is illustrated by an example.
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ESTIMATE OF THE THAWING ZONES AND HEAT LOSS
NEAR A PIPE BURIED IN FROZEN GROUND

B. A, Krasovitskii and B. L. Kriboshein UDC 536.42:662,998

The planning of pipeline in frozen ground requires knowledge of the heat loss in the surrounding
medium in order to correctly evaluate the productivity, and it is also necessary to know the size of the
region in which the soil thaws in order to determine the conditions providing stability and strength of the
pipe and its foundation. The general formulation of this problem can be solved only by numerical methods
on powerful computers. For approximate estimates, which are worthwhile in the prediction stage, in the
absence of surveying data, i.e., if the thermal and other physical characteristics of the soil are essentially
unknown, a "cruder” model can be used. To find an approximate solution of this problem we use the follow-
ing assumptions: a) The air temperature is constant, equal to the average annual temperature. and at a
level below 0°C; b) in the thawed soil around a warm pipe the governing factor is the radial heat flux from
the pipe, while in frozen soil near the air the governing factor is the vertical heat Flux toward the surface
with the air; c) the temperature distribution in the thawed and frozen zones if quasisteady, i.e., agrees
with the steady-state solution for a given fixed position of the thawing boundary. Under these conditions
the problem of determining the configuration of the thawing boundary reduces to the solution of a first-
order partial differential equation. This equation, in turn, reduces to a system of two first-order ordinary
differential equations, The latter are solved by means of standard programs on small computers. After
the time evolution of the thawing region is found, it is a simple matter to evaluate the heat flux from the
pipe to the soil. In addition, an equation was found for the heat flux into the soil over long periods of time.

The resulting solutions were used in calculations for specific pipelines., Comparison of the results
of these calculations with the numerical solution of the problem shows that these solutions can be used to
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evaluate the heat flux from a pipeline in frozen soil and to determine the configuration and propagation of
the thawing front. ' ‘

Dep. 3216-74, October 29, 1974.
Original article submitted August 23, 1973.

APPROXIMATE METHOD OF CALCULATING FILTRATION
PARAMETERS IN METALLOCERAMIC FILTERS

P. M, Zabridnii

The fundamental filtration parameters of metalloceramic filters are usually calculated by reference
to formulas incorporating experimental coefficients, This method of calculation is troublesome and inac-
curate.

The instantaneous delivery of a filter is equal to

aw ApF
v p €+t '

V-

The volume of oil passing through the filter is

W= FCa (V1+ 2Apxgror 1 \‘}.
4 pLL‘; /

oo

The resistance of the deposit formed on the surface of the filter barrier equals

roxoW
e F

ue

’

while the resistance of the filter barrier itself is

o = const.

For a constant flow of oil the pressure drop in the filter, equal to

Ap = uV (G - VirgroT),

should increase in accordance with a linear law until the permissible limit is reached, after which the fil-
ter should be cleaned or replaced.

If, however, the pressure drop is constant, the instantaneous delivery of the filter is
FAp 1

W= =,
- 27

e Y g 2
wis

i.e., it falls.

The resistance of the filter depends on the dimensions of the particles in the oil. The greatest re-
sistance is offered by particles with dimensions slightly greater than the pores of the filter. The particles
then stick in the pores and the number of open pores gradually diminishes.

Actually particles of varying size invariably fall into the oil; their distribution may be analyzed by
means of a distribution function or histegram. In general we have the equation

T

aw re {° . FAp

e B EL A A B -
[}

This eduation may be solved approximately in the form of power series or by any of the well-known
numerical methods; however, it is convenient to havean (even approximate) analytical expression for W/Ap.
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The foregoing equation contains experimental quantities specified to an accuracy of 30, . We shall consider
that f=FAp/u is specified to within 25-30%.

Using the method of experimental-coefficient variation developed by M. Ya. Brovman, we may re-
gard any function £y, f,, ..., [, as taking values lying in the ranges of "equal probability" 25-30%) at the
boundary of the region and at the initial instant of time. We should take account of the desirability of
choosing the most "indefinite” quantities, since it is these which determine the expedient accuracy in the
calculations,

From the latter equation we have
. o
4 [—Ir:“o—,q.vofr+ _;~}+§20(1 +Abr+cr)]=f.
For 1= O,A§20 :fo.

Referring f to its exact solution f; and carrying out certain transformations, we obtain

f . AbBt Ayro¥oe™B / kt )
—_— e — {1 — |
o TR T T BeR T 2

The coefficients A; and B may be determined from the condition that f/f, should be specified at two
particular instants of time.

If the quantity £/f, lies within the range of "equal probability" of the particular accuracy with which
the quantities in the equation are specified, the linear approximation for W(r) will constitute a satisfactory
approximation.

Dep. 62-75, September 12, 1974,
Original article submitted March 22, 1974.
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